Estimation of The Efficiency of Different Academic Departments Using Data Envelopment Analysis: A Study in an Iranian Medical University.

Askari R (PhD)1, Rafiei S (PhD)2, Ranjbar M (PhD)3, Pakdaman M (PhD)4, Sepase F (MSc)5

1. Associate professor, Department of Health Services Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
2. Assistant Professor, Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
3. Assistant Professor, Health Policy and Management Research Center, Department of Health care Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
4. Assistant Professor economics Department of Health Services Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
5. MSc Department of Health Services Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Received: 20 Jun 2018
Accepted: 10 Mar 2019
Revised: 29 Aug 2018

Abstract

Introduction: In every country, educational systems are regarded as the axes of development. Therefore, evaluating different academic departments as the main parts of educational systems is one of the most important responsibilities for university managers and authorities This study aimed at evaluating educational performance of all departments at the School of Health, a University of Medical Sciences using Data Envelopment Analysis technique in a time period of 2012-2015.

Methods: This descriptive, cross-sectional study evaluated the performance of the School of Health departments from 2012 to 2015 using Data Envelopment Analysis technique and Deap version 2.1.

Results: The study findings revealed that 57% of the academic departments were efficient and had constant returns to scale (CRS) while others (43%) had decreasing returns to scale (DRS). The Departments of Health Care Management, Nutrition, and Environmental Health were mentioned as reference groups for those inefficient ones.

Conclusion: Improving the quality of universities' performance depends greatly on competent and well-organized academic departments. Thus inefficient departments should benchmark reference groups to increase their output and promote the performance.

Keywords: Performance evaluation, DEA, Academic department, Efficiency.
Introduction

Nowadays, due to increasing acceleration of knowledge, educational systems face considerable change and complexity in their structure (1). To deal effectively with such instabilities, the evaluation technique can be helpful (2). Universities as the main body of higher education system are the significant sources of human resources supply being regarded as the development axis for socio-economic growth (3). To assure the attainment of defined objectives through maximum use of limited resources, these organizations need to be systematically assessed (2). Such evaluations reveal the deficiencies in organizational performance which act as a guidance for making necessary changes in existing processes to achieve determined goals. Thus setting a system to assess organizational performance plays an important role in improvement and excellence of training institutions (4).

Universities attract human and physical resources, money, and credit as the main inputs to follow their main mission of knowledge promotion and science production. Their performance evaluation can be done based on three dimensions of workforce, resource utilization, and organization. From the resource utilization aspect, performance analysis is defined by efficiency indicators which measure the efficacy of managerial decisions regarding optimal use of resources (5). Data envelopment analysis (DEA) is an evaluation technique which is nowadays used in a wide range mostly to assess and compare the relative efficiency of decision making units with homogenous multiple inputs and outputs (6). Efficiency is “a measure of the extent to which input is well-used for an intended task or function” (7). DEA is a linear programming method which examines the relationship between input and output variables of a production system. One of the characteristics mentioned for DEA is its structure for returns to scale which can be either constant or variable. Constant returns to scale (CRS) means that a unit of increase in the amount of input correspondingly leads to the same proportion of increase in the output. In fact CRS models are useful when all operating units work in an optimal scale. On the other hand, variable returns to scale (VRS) means that a unit of increase in input leads to disproportionate increase in output (8). Literature has mentioned different types of efficiency in various science and technology settings. Three main types of efficiency including technical, allocative efficiency, and scale efficiency can be addressed by DEA. Technical efficiency is related to an organization’s success in yielding maximum output from a determined set of inputs or the situation when it yields maximum amount of output from minimum inputs. Allocative
Estimation of The Efficiency of Different Academic Departments

Efficiency emphasizes on the way output measures are distributed among community members to achieve the right combination of outputs which represents consumers’ preferences. Finally scale efficiency is about an optimal size of operations which its value is calculated by dividing the aggregate efficiency by the technical one (9-11).

To use DEA model, inputs and outputs for decision making units should be determined. For this purpose, Bowline in 1998 stated some general guidelines as below:

- There is a need for clear connection between inputs and outputs so that by increasing a unit of input, an increase in one or more outputs would be expected.
- Input and output values in study units should be positive.
- Input and output variables should be comprehensive enough to explain the performance of under review unit.
- The selected input and output variables should be in line with managerial attitude toward performance evaluation of study units.
- The values of variables should be controlled in such a way that cannot simply be manipulated.
- Total number of input and output variables should not be more than one-third of evaluated units (12).

In recent decades, evaluating the performance of different educational departments at micro level has received a significant importance by researchers in different disciplines of social sciences particularly economics and management. Antonio in 2008 measured the efficiency of governmental universities in Portugal using DEA technique (13). Heidari Nezhad (2005), Homburg (2002), Goksen et al. (2015) and Abd Aziz et al. (2013) used a similar method to evaluate the efficiency and productivity of university educational departments (14-17). DEA as a linear programming method measures the efficiency of multiple decision-making units (DMUs) when the production process consists of multiple inputs and outputs. Researchers concluded that DEA is a dominant and easy technique to apply an approach which compares the performance of working units in different organizations and also provides managers with a useful guide to improve their departments’ efficacy. Having the ability to consider multiple inputs and outputs in the model, considering returns to scale in calculating efficiency and increasing or decreasing efficiency based on size and output levels are among the main DEA advantages which have been mentioned in several studies (18). Due to the increasing importance of efficiency measurement for different decision making units and mentioned benefits regarding DEA method, this study aimed at evaluating the efficiency of different educational departments...
at a University of Medical Sciences through Data Envelopment Analysis technique in a time period of 2012-2015

Methods

This descriptive, cross-sectional study was conducted to evaluate the performance of departments of the School of Health affiliated by a University of Medical Sciences (SSUMS) using DEA technique during 2012-2015. In total there were 13 academic departments among which those with more than 5 years of activity including the Departments of Health Care Management, Nutrition, Occupational Health, Environmental Health, Statistics and Epidemiology, Health Services and Food Safety were enrolled in the research. Data regarding performance and efficiency measurement of these 7 departments were gathered through interview with key informants and reviewing relevant documents registered in research training system of YUMS. To do so a checklist was designed and Data Envelopment Analysis (DEA) method was applied to rank study departments based on their technical and scale efficiency. Each variable’s data were analyzed through Excel and transferred to Deap 2.1 software for DEA analysis using variable return to scale (VRS) methodology. VRS is one of DEA models which is more suitable in realistic cases where there is no constant returns to scale and a definite change in input does not lead to similar amount of change in output. The method determines the points with lowest unit cost for any specified output and outlines the efficiency frontier by connecting the points. Units that are not placed on the frontier line are considered inefficient. Through identifying initial, optimal and extra amounts of inputs and outputs, DEA reveals the quantity of inputs and outputs that decision making units should omit or enhance to obtain efficiency (19). Efficiency measurement can be done through using two approaches including minimizing inputs at given output level and maximizing the output at the input level (20). As inputs are not controllable in study departments we used output orientation model. We defined input and output factors conforming the university mission and objective which included number of students, professors, and department staff as input variables whilst the number of published articles, books, research projects, graduates, their average BSc or MSc score, and satisfaction level were mentioned as output variables. As units might value inputs and outputs differently and consequently assume different weights, for each unit a set of weights should be adopted which confirms its most favorableness compared to other units (21). Flexibility in the selection of units’ weights might be a weakness owing to probable judicious choice of weights; therefore, in the current study all weights were extracted in an
Estimation of The Efficiency of Different Academic Departments

expert panel comprised of key informants (including research team, school dean and his assistants) using data obtained from literature, relevant documents and promotion guidelines for university faculty members.

Results
As a whole there were 13 educational departments among which those with more than 5 years of activity including the Departments of Health Care Management, Nutrition, Occupational Health, Environmental Health, Statistics and Epidemiology, Health Services, and Food Safety were enrolled in the research.

The main characteristics related to academic departments are depicted in Table 1. The order of establishment of academic departments revealed Health Services and Food Safety departments as relatively the oldest and newest

<table>
<thead>
<tr>
<th>Academic Departments</th>
<th>Year of establishment</th>
<th>Number of Staff</th>
<th>Number of Student Inputs</th>
<th>Number of articles</th>
<th>Number of research projects</th>
<th>Number of books</th>
<th>Number of graduates</th>
<th>Average satisfaction of students from the group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition</td>
<td>2008</td>
<td>4</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>153</td>
<td>24</td>
<td>86</td>
</tr>
<tr>
<td>Statistics and Epidemiology</td>
<td>2010</td>
<td>7</td>
<td>3</td>
<td>50</td>
<td>377</td>
<td>422</td>
<td>31</td>
<td>82.7</td>
</tr>
<tr>
<td>Environmental Health</td>
<td>1991</td>
<td>4</td>
<td>14</td>
<td>238</td>
<td>19</td>
<td>254</td>
<td>335</td>
<td>86.4</td>
</tr>
<tr>
<td>Health services</td>
<td>1990</td>
<td>6</td>
<td>10</td>
<td>269</td>
<td>37</td>
<td>248</td>
<td>333</td>
<td>84.4</td>
</tr>
<tr>
<td>Health Care Management</td>
<td>2003</td>
<td>5</td>
<td>5</td>
<td>96</td>
<td>31</td>
<td>116</td>
<td>48</td>
<td>87.3</td>
</tr>
<tr>
<td>Food safety</td>
<td>2011</td>
<td>3</td>
<td>6</td>
<td>28</td>
<td>109</td>
<td>18</td>
<td>18</td>
<td>83.5</td>
</tr>
<tr>
<td>Occupational Health</td>
<td>1991</td>
<td>3</td>
<td>12</td>
<td>261</td>
<td>31</td>
<td>190</td>
<td>224</td>
<td>86.5</td>
</tr>
</tbody>
</table>

Table 2 depicts the values of technical, scale and allocative efficiency in different academic departments. As it is shown, four departments including Health Care Management, Nutrition, Environmental Health, Statistics and Epidemiology were selected as reference groups for inefficient study units. Findings revealed that the Department of Health Care
Management had decreasing returns to scale and its both allocative and scale efficiency values were below 1. Food Safety and Occupational Health departments had also decreasing returns to scale and reported to be inefficient in terms of technical, allocative, and scale aspects.

Table 2: Comparison of the types of performance of the study groups

<table>
<thead>
<tr>
<th>Range</th>
<th>Academic Departments</th>
<th>Efficiency</th>
<th>Return to Scale</th>
<th>Efficiency references</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nutrition</td>
<td>Allocative 1</td>
<td>Technical 1</td>
<td>Scale 1 fixed</td>
</tr>
<tr>
<td>1</td>
<td>Statistics and Epidemiology</td>
<td>Allocative 1</td>
<td>Technical 1</td>
<td>Scale 1 fixed</td>
</tr>
<tr>
<td>1</td>
<td>Environmental Health</td>
<td>Allocative 1</td>
<td>Technical 1</td>
<td>Scale 1 fixed</td>
</tr>
<tr>
<td>1</td>
<td>Health Services</td>
<td>Allocative 1</td>
<td>Technical 1</td>
<td>Scale 1 fixed</td>
</tr>
<tr>
<td>2</td>
<td>Health Care Management</td>
<td>Allocative 0.783</td>
<td>Technical 1</td>
<td>Scale 0.783 decreasing</td>
</tr>
<tr>
<td>4</td>
<td>Food Safety</td>
<td>Allocative 0.936</td>
<td>Technical 0.971</td>
<td>Scale 0.965 decreasing</td>
</tr>
<tr>
<td>3</td>
<td>Occupational Health</td>
<td>Allocative 0.969</td>
<td>Technical 0.999</td>
<td>Scale 0.969 decreasing</td>
</tr>
</tbody>
</table>

Below table discloses the optimal condition regarding each study department using DEA method and variable returns to scale assumption. Reported findings declared the amount of inputs and outputs which inefficient units should increase in order to obtain efficiency. For instance, the Department of Food Safety should have almost 18 units of increase in students’ average score, 0.5 units in satisfaction, 398 units in published documents, and 21.8 units in the number of graduates.

Discussion

The current study evaluated the efficiency of academic departments at the School of Health affiliated by a University of Medical Sciences in a time period of 2012-2015. As there were multiple input and output variables in estimation process and the hypothesis for constant returns to scale had been rejected, also the departments had limitation in controlling their inputs, we applied VRS-output based model using DEA method. Study findings revealed that half of the academic departments were inefficient and needed to increase their outputs to obtain efficiency. Similarly Goodarzi in a study conducted to rank different academic groups in Kerman University of Medical Sciences found that inefficient departments should increase their outputs specially those related to the number of publications (22). Furthermore, the necessity for improvement in
the number of graduates, publications and research projects were emphasized in a study done by Poormiri and Ketabi in Isfahan (23).

In a study conducted in Malaysia to evaluate the relative efficiency of departments in a public university, DEA-VRS method was used. Findings affirmed the satisfactory level of performance in the study departments regarding producing graduates compared to total number of research projects or number of publications (24). A similar study was done in Transilvania University which applied input-oriented CCR model to rank its academic departments regarding efficiency. Results confirmed significant differences in efficiency scores of different departments emphasizing the fact that university authorities should allocate different amounts of resources to dissimilar departments (25). Agha et al (2011) also found that 12 departments out of 30 study units were efficient; among which public service activities needed the most improvement in outputs, while training resources required the most improvement in inputs (26). Another study conducted by Kuah et al. (2011) to assess the efficiency of universities through data envelopment analysis declared that under study universities should promote their efficiency regarding both research and training activities. Relevant findings suggested 40% increase in teaching outputs and 55% increase in research achievements (27).

These findings might be useful for university authorities and those responsible for policy making to attain necessary information for managing existing resources in the most efficient manner. Distinguishing efficient departments from inefficient ones is another beneficial result that helps managers make corrective and improving decisions based on it. Furthermore, the efficient departments can be mentioned as benchmarks for others enabling them to be informed of degree to which necessary changes should occur in their inputs or outputs to obtain efficiency. Managers can also find out how efficient the departments are in utilizing their resources and subsequently provide useful suggestions for them to increase their productivity by reallocating resources.

References


Estimation of The Efficiency of Different Academic Departments


ارزیابی عملکرد گروه‌های آموزشی دانشگاه بهداشت دانشگاه علوم پزشکی شهید صدوقی یزد با استفاده از تکنیک تحلیل پوششی داده‌ها

روزه که پژوهش حاضر از نوع توصیفی - کاربردی بوده که صورت مقطع عملکرد گروه‌های آموزشی دانشگاه بهداشت دانشگاه علوم پزشکی شهید صدوقی یزد به عنوان پژوهش نسخه متغیرهای سازمانی و بانک اطلاعاتی دانشجویان، تعداد اعتیاد به عنوان شاخص اصلی عملکرد در نظر گرفته شد.

یافته‌ها: ۷۵ از گروه‌های آموزشی (۴۳٪) کارا و دارای بذریه تا نسبت به مقیاس وامپای گروه‌ها (۳۳٪) دارای بذریه کاهش نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی نسبت به مقیاس بوده و گروه‌های آموزشی مایل به کاهش کارایی و کارایی در رابطه با معیارهای آموزشی N

This paper should be cited as:


* Corresponding Author: Tel: + 989134555169, Email: f.sepaseh@gmail.com

The Journal of Medical Education and Development Volume 14 Issue 1 Spring 2019